
Genomic patterns of DNA methylation: targets and
function of an epigenetic mark
Michael Weber and Dirk Schübeler
Methylation of cytosines can mediate epigenetic gene silencing

and is the only known DNA modification in eukaryotes. Recent

efforts to map DNA methylation across mammalian genomes

revealed limited DNA methylation at regulatory regions but

widespread methylation in intergenic regions and repeats. This

is consistent with the idea that hypermethylation is the default

epigenetic state and serves in maintaining genome integrity.

DNA methylation patterns at regulatory regions are generally

stable, but a minor subset of regulatory regions show variable

DNA methylation between cell types, suggesting an additional

dynamic component. Such promoter de novo methylation

might be involved in the maintenance rather than the initiation

of silencing of defined genes during development. How

frequently such dynamic methylation occurs, its biological

relevance and the pathways involved deserve investigation.
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Introduction
In prokaryotes, DNA can be methylated on both cyto-

sines and adenines and this methylation is involved in

various processes, including DNA repair and defense

against foreign DNA [1]. Eukaryotes show methylation

almost exclusively at cytosines: in mammals it occurs only

in the context of CpG dinucleotides (CpGs), while in

fungi (e.g. Neurospora crassa) and plants (e.g. Arabidopsis
thaliana) methylation is seen in various symmetrical and

asymmetrical sequence contexts (reviewed in [2]). How-

ever, cytosine methylation does not occur in all eukar-

yotes, as it is absent in Saccharomyces cerevisiae and in

many invertebrates, like the nematode Caenorhabditis
elegans. Regarding insects, low levels of cytosine methyl-

ation have been reported in Drosophila melanogaster and

substantial methylation has been found in the honey bee

Apis mellifera [3].
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Four DNA methyltransferases (DNMTs) sharing a con-

served DNMT domain have been identified in mammals.

The founding member, DNMT1, maintains DNA meth-

ylation during replication by copying the DNA methyl-

ation of the old DNA strand onto the newly synthesized

strand [4]. DNMT3a and DNMT3b are responsible for de
novo methylation, as they are able to target unmethylated

CpG sites [5]. They also cooperate with DNMT1 to

propagate methylation patterns during cell division [6].

DNMT2 has only weak DNA methyltransferase activity

in vitro and has recently been shown to efficiently meth-

ylate a tRNA [7�].

DNA methylation is generally associated with a repressed

chromatin state and inhibition of promoter activity. Two

models of repression have been proposed: first, cytosine

methylation can prevent the binding of some transcrip-

tion factors, and second, DNA methylation can affect

chromatin states indirectly through the recruitment of

methyl-CpG-binding proteins (MBPs) [8]. DNA meth-

ylation is essential for mammalian development, as shown

by the lethality of various DNMT deficiencies in mice

[5,9]. DNA-methylation-mediated repression has been

directly implicated in X-chromosome inactivation and

genomic imprinting (see review by Edwards and Fergu-

son-Smith in this issue); however, other functions of DNA

methylation in developmentally regulated gene expres-

sion remain less definite.

Mammalian genomes are globally depleted for CpGs,

except at short DNA stretches called CpG islands, which

are frequently associated with gene promoters. This

unequal distribution of CpGs needs to be considered

when interpreting global maps of DNA methylation,

because the amount of methylated cytosines at a given

region depends both on the degree of methylation and on

the density of CpGs.

Here we review how recent advances in determining the

sites of DNA methylation on a genome-wide scale have

given new insights into the biological function of DNA

methylation in maintaining genome integrity and cell

identity. Due to space limitations we will not focus on

aberrant DNA methylation in cancer, for which we refer

the reader to recent summary articles [10,11].

Going global: technologies for genome-wide
mapping of DNA methylation
Until recently the distribution of DNA methylation in

eukaryotic genomes (the ‘methylome’) remained poorly

characterized, despite its utility for defining global rules
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that govern the distribution of DNA methylation and

identifying potential exceptions. Within recent years,

however, approaches have been developed to map

DNA methylation genome-wide. Some of these are vari-

ations of classical approaches using methylation-sensitive

restriction enzymes [12–14] or digestion with the meth-

ylation-specific enzyme McrBC [15,16] (Figure 1a,b). One

constraint imposed by the use of restriction enzymes is

that only particular sequence motifs are analyzed (see [17]

for details). To circumvent such limitations, approaches

have been developed that rely on affinity purification of

methylated DNA that has been fragmented by random

shearing (Figure 1c). In the methylated DNA immuno-

precipitation assay (MeDIP), a monoclonal antibody

against 5-methylcytidine is utilized to purify methylated

DNA, which can be used for genomic profiling with DNA

miroarrays [18�,19�]. Other strategies isolate methylated

DNA with an MBD domain fused to a human IgG [20], or

with MBD proteins bound to a sepharose matrix [21], in a

variation of a previous approach using a column [22]. One

caveat with affinity approaches is that methylated CpG-

rich sequences give higher enrichments than methylated

CpG-poor sequences. In addition, microarray-based
Figure 1

Technologies to map DNA methylation genome-wide. Classical approaches

methylated (McrBC) or (b) unmethylated (HpaII, NotI) DNA; however, these

methods use isolation of methylated DNA with antibodies or MBD proteins.

with input DNA (labeled in red) on any existing microarray. Lollipop shapes
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detection has limited ability to measure allelic DNA meth-

ylation or DNA methylation of individual repetitive

elements. Bisulfite genomic sequencing to determine

DNA methylation is less limited in that regard, but requires

extensive resources when applied genome-wide [23��].

In addition to novel experimental strategies, compu-

tational approaches have been developed to predict

DNA methylation from DNA sequence [24,25]. These

appear to have a high success rate in predicting steady

state methylation, and it will be interesting to see if these

can also predict changes in methylation in development

and disease.

Genomic distribution of DNA methylation
It has long been speculated that most coding regions in

mammalian genomes show a high degree of DNA meth-

ylation, and this has now been confirmed across the

genome by independent studies. Hybridization of meth-

ylated DNA to a BAC microarray representing the entire

human genome showed that DNA methylation of unique

sequences is abundant in genic regions [18�]. This is in

agreement with earlier studies of selected genes showing
to study DNA methylation use restriction enzymes that cut only (a)

methods limit the analysis to particular sequence motifs. (c) Alternative

The methylated DNA (labeled in green) can be used for cohybridization

denote methyl groups.
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that exons are methylated in both human and mouse [26].

Recent bisulfite sequencing data on 2524 amplicons from

three human chromosomes confirmed that sequences

outside of promoters have a high degree of DNA meth-

ylation [23��]. Thus in mammals most DNA outside

regulatory regions (intergenic DNA, coding DNA and

repeat elements) appears to be methylated (Figure 2a).

In contrast to mammals, DNA methylation is restricted to

specific genomic regions in plants and fungi. In Arabi-
dopsis thaliana, most of the methylated fraction of the

genome is composed of local tandem or inverted repeats,

transposons and other dispersed repeats that are found

around centromeres and in euchromatin. RNAi pathways

have been directly involved in guiding DNA methylation

to tandem repeats, leading to the model that siRNA

produced from repeats selectively guides DNA methyl-

ation to homologous sequences [27] (Figure 2b). The

same pathways are involved in guiding DNA methylation

to transposons [28], although this does not appear to be

the case in the fungus Neurospora crassa [29]. Recent

genome-wide mapping in Arabidopsis thaliana using high

resolution tiling arrays also revealed that DNA methyl-

ation is found in the transcribed regions of a significant

fraction (>20%) of expressed genes [30��,31��], pointing
Figure 2

Distribution of DNA methylation in the genome. (a) In mammals, all sequenc

CpG islands, which often colocalize with gene promoters. How CpG islands

A. thaliana genome contains DNA methylation in repeats (both CG and non

by DRM2 and maintained by MET1, while non-CG methylation is establishe

producing siRNAs have been shown to guide methylation to repetitive DNA

specifically produced from local tandem repeats as opposed to unique seq

could generate double-stranded RNA substrates processed into siRNAs tha

triangles denote repeated sequence; lollipop shapes denote methylated (bla
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to a transcription-coupled targeting of DNA methylation

in genes. One proposed model is that cryptic initiation in

gene bodies leads to aberrant double-stranded RNA

transcripts that are processed by the RNAi pathway

and in turn recruit the DNA methylation machinery

[31��] (Figure 2b).

DNA methylation and genome integrity
The fact that most DNA methylation in mammals is found

outside regulatory regions suggests a role for DNA meth-

ylation in the global maintenance of the genome, and

several functional models have been proposed.

Inhibition of cryptic initiation

Methylation of coding regions is common among eukar-

yotes, as it has been described not only in mammals and

plants (see above), but also in a chordate (Ciona intesti-
nalis) [32] and more recently in the honey bee [3].

However its function remains enigmatic, especially

because it carries a cost: DNA methylation has been

shown to inhibit transcription elongation in Neurospora
crassa [33], and to reduce elongation rates in plants [31��]
and mammals [34]. One potential role for intragenic

DNA methylation could be to inhibit cryptic transcrip-

tional initiation outside gene promoters. The process of
es may be accessible to DNA methyltransferases (DNMTs), except

are protected from DNA methylation is currently unknown. (b) The

-CG) and in gene bodies (mostly CG). CG methylation is established

d by DRM2 and maintained by DMR2 and CMT3. RNAi pathways

, although it is still unclear how double-stranded RNA substrates are

uences [27]. Similarly, cryptic antisense transcription within genes

t guide CG methylation to gene bodies [31��]. Boxes denote exons;

ck) or unmethylated (white) cytosines.
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transcription itself disrupts chromatin structure and leads

to nucleosomal displacement, therefore exposing poten-

tial cryptic initiation sites. Recent evidence in yeast

showed that methylation of lysine 36 of histone H3 occurs

at active genes, where it recruits histone deacetylase

(HDAC) activity to prevent transcription initiation at

cryptic sites that are exposed as a consequence of tran-

scription-coupled nucleosomal disruption [35]. Since

recruitment of HDAC activity by DNA methylation is

well established, it might play a role in compacting

chromatin in coding sequences to inhibit cryptic

initiation. However, experimental data to support this

model are still lacking.

Protection against mobile elements

Transcriptional inactivation and immobilization of

mobile elements that are densely interspersed in eukar-

yotic genomes is presumably important to ensure geno-

mic integrity, and DNA methylation plays a role in this

process. In plants, loss of CG and non-CG DNA meth-

ylation leads to the reactivation of mobile elements and

increases the frequency of transposition, consistent with a

primary role for DNA methylation in genome defense

[36]. In mammalian genomes, most repeats are found to

be methylated [37] and there is evidence that DNA

methylation is directly involved in their silencing. IAP

retrotransposons are transcriptionally reactivated in

Dnmt1�/� mouse embryos [38], whereas IAP and L-

INE-1 elements are reactivated in germ cells lacking

Dnmt3L or Lsh, two cofactors required for the establish-

ment of DNA methylation patterns in germ cells [39,40�].
However, in contrast to plants, there is as yet no con-

clusive evidence for a mechanism that targets DNA

methylation directly to repeats in mammals and fungi.

Maintenance of genome stability

Several genetic studies indicate that global hypomethyla-

tion is associated with increased genome instability in

mammalian cells. Inactivation of Dnmt3b in mouse

embryonic fibroblasts leads to partial loss of DNA meth-

ylation, changes in ploidy and chromosomal abnormalities

[41]. Absence of Lsh, a chromatin remodeler required for

global DNA methylation patterns, also leads to chromo-

somal abnormalities in embryonic fibroblasts and germ

cells [40�,42]. In humans, deletion of Dnmt1 and Dnmt3b
induces chromosomal abnormalities in cell lines [43,44�],
and partial loss of function of DNMT3b is linked to ICF

syndrome, characterized by chromosomal rearrangements

in hypomethylated centromeric regions [45]. The con-

nection between DNA hypomethylation and genome

instability is also well documented in the context of

cancer. Many cancer cells display global hypomethylation

of their genome, which has been causally linked to

increased chromosomal instability and tumor progression

[46]. Recent studies in gastrointestinal cancers showed

that global hypomethylation precedes copy number

changes [47], and that the extent of hypomethylation
Current Opinion in Cell Biology 2007, 19:273–280
correlates with the extent of genomic damage [47,48].

In that context, genome-wide mapping of DNA methyl-

ation will be valuable to test if sites of hypomethylation

coincide with sites of genome instability in cancer cells

[49]. It is currently unclear how DNA methylation coun-

teracts genomic instability, but one possibility is that

hypomethylation leads to increased frequency of illegi-

timate recombination between homologous repeats

[39,40�]. In support of this hypothesis, hypomethylation

of telomeric regions in DNMT1�/� and DNMT3a,3b�/�

mouse ES cells is associated with an increased frequency

of telomere recombination [50�].

DNA methylation and maintenance of cell
identity
Developmental restriction by repression of genes

represents a key paradigm in epigenetics. On the basis

of its potential to silence promoters, DNA methylation has

been hypothesized to play an important role in cell-type-

specific gene expression. Rare examples of tissue-specific

promoter DNA methylation exist [12,51], while other

studies on individual genes failed to establish a strong

connection between changes in expression and dynamic

methylation [52]. Indeed, �60% of genes in mammalian

genomes contain promoter-proximal CpG islands, which

are believed to be always unmethylated [2]. Recent com-

prehensive datasets confirmed that most CpG island pro-

moters are unmethylated in different types of human

primary cells, but revealed that a subset (2–5%) of CpG

island promoters show high DNA methylation in primary

tissues [12,18�,23��,37,53,54��]. Moreover, CpG island

methylation has also been reported to regulate lineage-

specific expression in the Rhox gene cluster [55��]. Thus,

protection of CpG islands from de novo methylation can be

overcome in primary cells on specific target genes. Nota-

bly, a recent comprehensive study of human promoters

identified many novel targets and suggests that de novo

methylation of CpG islands in somatic cells preferentially

occurs at germline-specific genes as well as promoters with

an intermediate CpG frequency [54��]. Furthermore, com-

parison of methylation profiles between tissues suggests

that a large proportion of differentially methylated regions

is located outside promoters [23��,53], suggesting that

DNA methylation could also modulate the activity of

distal enhancers.

Several studies indicate that DNA methylation is

involved in the maintenance rather than the initiation

of gene silencing. In the case of epigenetic reprogram-

ming of the OCT4 promoter during stem cell differen-

tiation, DNA methylation is a late event; it is not required

to silence the gene but is required to stably prevent its re-

expression [56��]. Similarly a CpG-free transgene under-

goes transcriptional silencing to the same extent as a

transgene containing CpGs and becoming DNA-methyl-

ated, but the transgene is resistant to reactivation only if

methylated [57�].
www.sciencedirect.com
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Together these data are in line with a function of DNA

methylation in epigenetic repression of a subset of genes

during development, which might function in maintain-

ing lineage restriction.

Reprogramming of DNA methylation
How is DNA methylation specifically targeted to a subset

of promoters? As most of the genome is methylated, one

could envision that de novo methylation of selected CpG

island promoters may entail loss of protection against a

default program yielding DNA methylation (Figure 3a).

Currently we know little about what protects CpG islands

from DNA methylation, and understanding this phenom-

enon is likely to provide a key to understanding the

mechanisms of dynamic promoter methylation. In most

studied examples, de novo methylation coincides with or

follows transcriptional shutdown, making it possible that

transcription or the associated chromatin state could

provide protection from DNA methylation (Figure 3b).

However, as most CpG island promoters remain meth-

ylation-free even when inactive [54��], this is unlikely to
Figure 3

Models for targeting DNA methylation to gene promoters in mammalian

cells. (a) The specificity of promoter DNA methylation could be conferred

by the selective loss of an as-yet-unidentified protecting factor, X. (b)

Absence of a transcribing polymerase complex could initiate DNA

methylation on some promoters. (c) Some transcription factors (TFs)

have been proposed to interact with DNMTs and recruit them to their

target sites. (d) DNMTs could be targeted by histone methylation

through an interaction with the histone methyltransferase (HMT) or the

histone mark itself. Box denotes first exon; circles denote methylated

(black) or unmethylated (white) CpGs.
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be a general mechanism. Alternative models suggest

active recruitment of DNMT activity to targeted promo-

ters. This could involve sequence-specific transcription

factors, as suggested for Myc [58] or PU.1 [59] (Figure 3c).

Several studies are also compatible with the recruitment

of DNMT activity by histone modifications (Figure 3d).

For example, H3K9 methylation is required to target

DNA methylation to pericentric repeats [60] or to the

promoter of the OCT4 gene during differentiation of

stem cells [56��]. A connection between DNA methyl-

ation and Ezh2-mediated H3K27 methylation has also

been proposed in the context of cancer [61�,62–64] and

it remains to be seen if similar mechanisms could

function during normal development. Global analysis

should help to discriminate between these models and

reveal if reprogrammed promoters share common features

in regards to chromatin state and sequence motifs. Ulti-

mately however these mechanistic models need to be

tested genetically.

Variation and heritability of DNA methylation
patterns
The possibility that DNA methylation patterns are vari-

able between individuals and that epigenotypes could

contribute to phenotypic diversity and disease suscepti-

bility has drawn considerable attention in recent years

(Figure 4). Pilot studies aimed at estimating variability in

DNA methylation patterns between individuals gave

quite different results. Bisulfite sequencing of 2524
Figure 4

Intra- and inter-individual variation in DNA methylation patterns. There is

evidence for variation in DNA methylation patterns between tissues and

individuals; however, the phenotypic consequences and heritability of

these variations are unclear. More work is needed to study how DNA

methylation is involved in establishing and maintaining cell identity, and

how the environment might influence these patterns of methylation.

Current Opinion in Cell Biology 2007, 19:273–280
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amplicons revealed very little variation with age and sex

[23��], whereas another study reported a high frequency

of epigenetic differences between aging monozygotic

twins [65]. It remains to be seen if this discrepancy

originates from the tested samples or the analytical

methods applied. Nevertheless there is little doubt that

epimutations can occur in mammals. A classic example is

the agouti locus in the mouse, where gene expression

depends on variable and inheritable methylation of a

promoter proximal repeat [66]. Recently, examples of

potential heritable epimutations in the promoters of

the MLH1 and MSH2 genes that lead to increased

susceptibility to cancer have been described in humans

[67,68��]. Another pioneering work showed heritable

altered DNA methylation in rats exposed to endocrine

disruptors [69��], suggesting that DNA methylation pat-

terns can be influenced by the environment. However,

more comprehensive analyses are needed to estimate the

frequency of these phenomena and, more importantly, to

link observed epigenetic differences to phenotypes.

Conclusions
Recent advances in epigenomic approaches allow map-

ping of the methylation state of the genome with high

accuracy, enabling the testing of models for the function

of this DNA modification. Emerging evidence suggests

that hypermethylation is the default state of mammalian

genomes, but that dynamic DNA methylation of regu-

latory regions can occur during development. Moreover,

epigenetic differences might also exist between individ-

uals. Studying the extent of both these phenomena and

their biological relevance represents major challenges for

future research.
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